Data ingestion and initial analysis from FL WIN water quality database and other sources. Below are some statistics on data across all analytes and programs. For more information on specific analytes and providers, see the analyte reports and provider reports .
Data for each analyte can be downloaded from the relevant analyte report. The full compiled data can be downloaded from the University of South Florida here
Florida Coral Reef Water Quality Database Compilation (FCRWQDC). This work is a product of the University of South Florida Institute for Marine Remote Sensing (IMaRS), funded by the Florida Department of Environmental Protection (FDEP).
get data across all programs
library ("here" )
source (here ("R/getAllData.R" ))
df <- getAllData ()
=== LOADING PROVIDER : SFER...
[1] "WARN - rows found with no location ID"
=== LOADING PROVIDER : MiamiBeach...
=== LOADING PROVIDER : BBWW...
=== LOADING PROVIDER : FIU_Estuaries...
=== LOADING PROVIDER : AOML_FBBB...
=== LOADING PROVIDER : BBAP...
=== LOADING PROVIDER : BROWARD...
=== LOADING PROVIDER : DEP...
=== LOADING PROVIDER : DERM_BBWQ...
=== LOADING PROVIDER : FIU_WQMP...
=== LOADING PROVIDER : PALMBEACH...
create .csv of all data
source (here ("R/mutateWINTo2025.R" ))
# reduce to only cols we need & save to csv
write.csv (mutateWINTo2025 (df), here ("data" , "exports" , "allData.csv" ))
List of Analytes:
list all analytes
print (unique (df$ DEP.Analyte.Name))
[1] "Temperature" "Salinity"
[3] "Dissolved_Oxygen" "Ammonium"
[5] "Nitrite" "Nitrate"
[7] "Nitrate+Nitrite" "Orthophosphate"
[9] "Silicate" "Chlorophyll_a"
[11] "Pheophytin" "pH"
[13] "Specific_Conductivity" "Turbidity"
[15] "Total_Kjeldahl_Nitrogen" "Phosphorus"
[17] "Total_Nitrogen" "Fecal_Coliforms"
[19] "Enterococci" "Ammonia"
[21] "Ammonia+Ammonium"
Overall statistics:
skimr on all data
Data summary
Name
df
Number of rows
1422618
Number of columns
126
_______________________
Column type frequency:
character
88
Date
1
logical
8
numeric
29
________________________
Group variables
None
Variable type: character
keyfield
1329448
0.07
24
43
0
8468
0
Activity.ID
1005946
0.29
5
36
0
86685
0
time
1329448
0.07
5
5
0
1423
0
Monitoring.Location.ID
22
1.00
0
25
23721
2003
0
station_type
1329470
0.07
1
1
0
2
0
depth_class
1329470
0.07
3
7
0
3
0
depth_order
1329470
0.07
4
5
0
12
0
notes
1422530
0.00
1
75
0
8
11
DEP.Analyte.Name
0
1.00
2
23
0
21
0
RowID
1399577
0.02
6
7
0
23041
0
ProgramID
1398667
0.02
4
4
0
2
0
Habitat
1078890
0.24
12
21
0
5
0
IndicatorID
1398667
0.02
1
1
0
3
0
IndicatorName
1398667
0.02
9
13
0
3
0
ParameterID
1398667
0.02
1
2
0
10
0
AreaID
1398667
0.02
1
2
0
2
0
ManagedAreaName
1398667
0.02
29
38
0
2
0
Activity.Type
1101931
0.23
5
35
0
12
0
RelativeDepth
1305519
0.08
3
7
0
3
0
TotalDepth_m
1422555
0.00
6
8
0
11
0
MDL
1102841
0.22
0
11
110146
241
0
PQL
1102841
0.22
0
11
110146
180
0
DetectionUnit
1420452
0.00
4
4
0
1
0
Value.Qualifier
894177
0.37
0
5
184005
127
0
ValueQualifierSource
1422618
0.00
NA
NA
0
0
0
Result.Comments
1102753
0.22
0
874
280333
939
11
SEACAR_QAQCFlagCode
1398667
0.02
2
13
0
26
0
SEACAR_QAQC_Description
1398667
0.02
31
195
0
26
0
Include
1398667
0.02
1
1
0
2
0
MADup
1398667
0.02
1
1
0
1
0
ExportVersion
1398667
0.02
23
23
0
3
0
Region
1302832
0.08
2
19
0
22
0
DEP.Result.Unit
172638
0.88
0
10
18892
21
0
original.analyte.name
0
1.00
2
44
0
61
0
program
0
1.00
3
13
0
11
0
ProgramName
1398667
0.02
25
36
0
2
0
ParameterName
1399577
0.02
2
23
0
10
0
ParameterUnits
1399577
0.02
3
9
0
6
0
ProgramLocationID
1399577
0.02
1
2
0
55
0
ActivityType
1399577
0.02
5
6
0
2
0
SampleDate
1399577
0.02
23
23
0
2134
0
ActivityDepth_m
1422618
0.00
NA
NA
0
0
0
ValueQualifier
1422618
0.00
NA
NA
0
0
0
SampleFraction
1422618
0.00
NA
NA
0
0
0
ResultComments
1420452
0.00
21
21
0
1
0
SEACAR_EventID
1399577
0.02
36
36
0
2394
0
data_source
1393652
0.02
5
10
0
2
0
CLIENT SAMPLE ID
1416693
0.00
1
3
0
70
0
LAB SAMPLE ID
1416693
0.00
11
11
0
494
0
MATRIX
1416693
0.00
5
5
0
1
0
COLLECTED
1416693
0.00
10
10
0
23
0
ANALYTE
1416693
0.00
8
27
0
12
0
SAMPLE RESULT
1417663
0.00
3
9
0
1545
0
REPORTING LIMIT
1419161
0.00
1
6
0
10
0
UNITS
1416693
0.00
3
10
0
8
0
METHOD
1416693
0.00
10
29
0
8
0
DILUTION
1416693
0.00
1
2
0
5
0
ANALYZED
1416693
0.00
10
10
0
123
0
PREPARED
1416693
0.00
10
10
0
127
0
source_file
1416693
0.00
19
22
0
23
0
SAMPLE COLLECTION DATE
1416693
0.00
9
10
0
23
0
DEP.Result.ID
1005961
0.29
3
8
0
327085
0
BASIN
1058748
0.26
2
5
0
6
0
CLUSTER
1058748
0.26
2
4
0
37
0
ZSI
1059903
0.25
2
5
0
25
0
ZONE
1331373
0.06
3
3
0
4
0
Long Deg
1326633
0.07
2
3
0
3
0
Long Min
1326633
0.07
1
22
0
4494
0
Lat Deg
1326633
0.07
2
2
0
2
0
Lat Min
1326633
0.07
1
21
0
3933
0
Organization.ID
582901
0.59
7
9
0
10
0
Org.Latitude..DD.MM.SS.SSSS.
1102841
0.22
0
11
309205
22
0
Org.Longitude..DD.MM.SS.SSSS.
1102841
0.22
0
12
309205
22
0
WBID
1102841
0.22
0
6
37805
115
0
Sample.Collection.Type
1102841
0.22
0
22
10452
4
0
Sampling.Agency.Name
585581
0.59
7
58
0
9
0
Activity.Depth.Unit
1102841
0.22
0
2
24857
3
0
Activity.Top.Depth
1102841
0.22
0
0
319777
1
0
Activity.Bottom.Depth
1102841
0.22
0
0
319777
1
0
Activity.Depth.Top.Bottom.Unit
1102841
0.22
0
0
319777
1
0
DEP.Result.Value.Text
1102841
0.22
0
12
311626
2
0
Sample.Fraction
1102841
0.22
0
9
131120
3
0
Lab.ID
1102841
0.22
0
6
102313
10
0
Audit.Censored.Decisions
1102841
0.22
0
0
319777
1
0
source
1102841
0.22
3
9
0
6
0
Value.1
964290
0.32
1
6
0
4499
0
Station
1419938
0.00
3
3
0
112
0
Date
1419938
0.00
11
14
0
663
0
Variable type: Date
Activity.Start.Date.Time
623217
0.56
23-09-01
2024-11-17
2019-11-20
2395
Variable type: logical
nisk_start
1422618
0
NaN
:
nisk_end
1422618
0
NaN
:
TIME
1422618
0
NaN
:
DETECTION LIMITS
1422618
0
NaN
:
NO3 DL
1422618
0
NaN
:
DIN DL
1422618
0
NaN
:
TON DL
1422618
0
NaN
:
APA DL
1422618
0
NaN
:
Variable type: numeric
year
1329470
0.07
2020.43
2.89
2014.00
2018.00
2021.00
2023.00
2024.00
▃▃▅▆▇
month
1329448
0.07
6.69
3.52
0.00
3.00
7.00
10.00
12.00
▅▅▇▅▇
day
1329470
0.07
14.58
8.58
1.00
7.00
14.00
22.00
31.00
▇▆▆▆▃
Org.Decimal.Latitude
560180
0.61
25.54
0.60
24.00
25.12
25.54
25.87
28.00
▁▇▆▁▁
lat_min
1329470
0.07
30.30
15.98
0.03
20.41
33.11
42.78
59.83
▆▅▇▇▃
lat_dec
1329470
0.07
25.77
1.02
24.40
24.93
25.45
26.58
28.78
▇▆▃▃▁
Org.Decimal.Longitude
560180
0.61
-80.77
0.65
-85.00
-81.12
-80.61
-80.21
-80.00
▁▁▁▃▇
lon_min
1329470
0.07
27.76
17.24
0.00
12.94
24.81
43.25
60.00
▇▇▆▅▆
lon_dec
1329470
0.07
-81.77
0.93
-85.02
-82.49
-81.65
-81.17
-80.04
▁▂▅▇▃
Activity.Depth
1080237
0.24
0.48
0.17
0.00
0.50
0.50
0.50
1.00
▂▁▇▂▁
cast
1329470
0.07
0.72
0.46
0.00
0.00
1.00
1.00
2.00
▃▁▇▁▁
DEP.Result.Value.Number
103767
0.93
1258.27
5457.01
-0.83
0.10
1.00
10.64
178550.00
▇▁▁▁▁
Year
631822
0.56
2011.40
9.90
1989.48
2002.18
2018.00
2020.00
2024.00
▁▃▃▁▇
Month
631800
0.56
6.57
3.45
0.00
4.00
7.00
10.00
12.00
▅▅▇▆▇
ResultValue
1399577
0.02
12.86
41.22
0.00
0.29
4.89
24.47
5389.00
▇▁▁▁▁
OriginalLatitude
1399577
0.02
25.80
0.02
25.77
25.78
25.79
25.81
25.87
▆▇▂▁▂
OriginalLongitude
1399577
0.02
-80.15
0.01
-80.17
-80.16
-80.15
-80.13
-80.12
▇▆▅▅▇
SURV
1058748
0.26
121.76
53.81
-8.00
80.00
125.00
167.00
211.00
▂▆▇▇▇
STA
1058748
0.26
142.34
163.89
1.00
28.00
62.00
133.00
479.00
▇▂▁▁▂
YEAR
1058748
0.26
2001.26
4.50
1989.48
1997.79
2001.56
2005.03
2008.73
▁▅▇▇▇
NOX DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.00
▇▃▆▁▁
NO2 DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.00
▆▇▁▁▁
NH4 DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.01
▇▁▁▁▂
TN DL
1058748
0.26
0.03
0.03
0.00
0.00
0.03
0.05
0.08
▇▃▁▆▂
TP DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.00
▇▁▁▁▁
SRP DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.00
▇▂▁▅▅
CHLA DL
1058748
0.26
0.10
0.00
0.10
0.10
0.10
0.10
0.10
▁▁▇▁▁
TOC DL
1058748
0.26
0.12
0.04
0.05
0.12
0.12
0.16
0.16
▅▁▁▇▆
SiO2 DL
1058748
0.26
0.00
0.00
0.00
0.00
0.00
0.00
0.01
▇▁▁▁▁
Create artistic data image
library (dplyr)
library (reshape2) # for melt()
library (ggplot2)
library (viridis)
library (RColorBrewer)# for scale_fill_distiller()
# 1. Extract & drop NA
vals_raw <- df$ DEP.Result.Value.Number
vals_raw <- vals_raw[! is.na (vals_raw)]
# 2. Log-transform
v1 <- log10 (vals_raw + 1 )
# 3. Percentile of the log-values
pct1 <- ecdf (v1)(v1)
# 4. Grid dims
N <- length (pct1)
ncol <- ceiling (sqrt (N))
nrow <- ceiling (N / ncol)
# 5. Pad
pad_len <- (nrow * ncol) - N
p1_pad <- c (pct1, rep (NA , pad_len))
# 6. Matrix & melt
mat_p1 <- matrix (p1_pad, nrow = nrow, ncol = ncol, byrow = TRUE )
mat_long_p1 <- melt (mat_p1, varnames = c ("row" ,"col" ), value.name = "pct_log" )
# 7. Plot
ggplot (mat_long_p1, aes (x = col, y = row, fill = pct_log)) +
geom_tile (color = NA ) +
scale_fill_distiller (
palette = "Spectral" , # try "RdYlBu", "PuOr", "BrBG", etc.
direction = 1 , # reverse=FALSE so low values start at red-ish end
na.value = "grey90" , # color for the padded NA cells
guide = "none" # hide the legend; remove if you want a colorbar
) +
scale_y_reverse () +
theme_void () +
theme (legend.position = "none" )
If you have visualization ideas for this data, please open a github issue here .