Chlorophyll a

Chlorophyll a Report

Code
if (!requireNamespace("librarian", quietly = TRUE)) {
  # If not installed, install the package
  install.packages("librarian")
}

librarian::shelf(
  glue,
  here,
  skimr,
  ggplot2
)

data <- read.csv(here("data/df_cleaned.csv"))
parameter_name <- params$parameter_name
apply param bounds
bounds <- read.csv(here("parameter_bounds.csv"), stringsAsFactors = FALSE, strip.white = T)
lower_bound <- bounds$min[bounds$param == parameter_name]
upper_bound <- bounds$max[bounds$param == parameter_name]

filter_condition <- (data$Parameter == parameter_name & (data$Value < lower_bound | data$Value > upper_bound))

tryCatch({  # this tryCatch is for when filter_condition is logical(0) i.e. no matches
  data <- dplyr::filter(
    data, 
    !filter_condition
  )
  print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
}, error = function(e){
  print(glue("no rows removed"))
})
0 rows dropped as < 0 or > 75
apply param bounds
print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
0 rows dropped as < 0 or > 75
write cleaned DataFrame to a file
write.csv(data, here("data/df_cleaned_02.csv"), row.names = FALSE)
load data & skim
subset_data <- subset(data, Parameter == parameter_name)
print(skimr::skim(subset_data))
── Data Summary ────────────────────────
                           Values     
Name                       subset_data
Number of rows             36813      
Number of columns          17         
_______________________               
Column type frequency:                
  character                4          
  numeric                  13         
________________________              
Group variables            None       

── Variable type: character ────────────────────────────────────────────────────
  skim_variable n_missing complete_rate min max empty n_unique whitespace
1 Source                0             1   3  10     0        9          0
2 Site                  0             1   1  28     0      515          0
3 Parameter             0             1  13  13     0        1          0
4 Units                 0             1   4   4     0        1          0

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     n_missing complete_rate      mean         sd     p0
 1 ...1                      0         1     101919.   224634.       1  
 2 Latitude                  0         1         25.6       0.835   24.3
 3 Longitude                 0         1        -80.8       0.807  -85.7
 4 Month                     0         1          6.73      3.45     1  
 5 Day                      36         0.999     13.5       8.32     1  
 6 Year                      0         1       2015.        8.15  1995  
 7 Value                     0         1          1.42      3.13     0  
 8 Sample.Depth             36         0.999      1.38     18.3      0  
 9 Total.Depth           25218         0.315      7.19      7.52     0  
10 verbatimValue             0         1          1.42      3.13     0  
11 VerbatimLatitude          0         1         25.6       0.835   24.3
12 verbatimLongitude         0         1        -80.8       0.807  -85.7
13 Value_orig                0         1          1.42      3.13     0  
         p25       p50      p75     p100 hist 
 1 11199     20429     31249    714809   ▇▁▁▁▁
 2    24.8      25.5      26.1      30.8 ▇▆▁▁▁
 3   -81.4     -80.4     -80.1     -80.0 ▁▁▁▃▇
 4     4         7        10        12   ▇▅▅▅▇
 5     7        12        20        31   ▇▇▆▃▃
 6  2009      2018      2021      2023   ▁▂▂▂▇
 7     0.276     0.495     1.28     70.9 ▇▁▁▁▁
 8     0         0.5       0.5    2494   ▇▁▁▁▁
 9     2.57      4.72      9.5     121.  ▇▁▁▁▁
10     0.276     0.495     1.28     70.9 ▇▁▁▁▁
11    24.8      25.5      26.1      30.8 ▇▆▁▁▁
12   -81.4     -80.4     -80.1     -80.0 ▁▁▁▃▇
13     0.276     0.495     1.28     70.9 ▇▁▁▁▁
create params$parameter_name histogram
ggplot2::ggplot(subset_data, aes(x=Value)) +
    geom_histogram(bins=30, fill="blue", color="black") +
    scale_y_log10() +  # Transform the y-axis to a logarithmic scale
    labs(title=paste("Histogram of Values for", params$parameter_name),
         x="Value",
         y="Log Frequency") +
    theme_minimal()