Nitrite (N)

Nitrite (N) Report

Code
if (!requireNamespace("librarian", quietly = TRUE)) {
  # If not installed, install the package
  install.packages("librarian")
}

librarian::shelf(
  glue,
  here,
  skimr,
  ggplot2
)

data <- read.csv(here("data/df_cleaned.csv"))
parameter_name <- params$parameter_name
apply param bounds
bounds <- read.csv(here("parameter_bounds.csv"), stringsAsFactors = FALSE, strip.white = T)
lower_bound <- bounds$min[bounds$param == parameter_name]
upper_bound <- bounds$max[bounds$param == parameter_name]

filter_condition <- (data$Parameter == parameter_name & (data$Value < lower_bound | data$Value > upper_bound))

tryCatch({  # this tryCatch is for when filter_condition is logical(0) i.e. no matches
  data <- dplyr::filter(
    data, 
    !filter_condition
  )
  print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
}, error = function(e){
  print(glue("no rows removed"))
})
0 rows dropped as < 0 or > 0.5
apply param bounds
print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
0 rows dropped as < 0 or > 0.5
write cleaned DataFrame to a file
write.csv(data, here("data/df_cleaned_02.csv"), row.names = FALSE)
load data & skim
subset_data <- subset(data, Parameter == parameter_name)
print(skimr::skim(subset_data))
── Data Summary ────────────────────────
                           Values     
Name                       subset_data
Number of rows             19515      
Number of columns          17         
_______________________               
Column type frequency:                
  character                4          
  numeric                  13         
________________________              
Group variables            None       

── Variable type: character ────────────────────────────────────────────────────
  skim_variable n_missing complete_rate min max empty n_unique whitespace
1 Source                0             1   3  10     0        5          0
2 Site                  0             1   1  28     0      575          0
3 Parameter             0             1  11  11     0        1          0
4 Units                 0             1   4   6     0        2          0

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     n_missing complete_rate         mean          sd       p0
 1 ...1                      0        1      355482.      194320.     211877  
 2 Latitude                  0        1          26.3          0.667      24.4
 3 Longitude                 0        1         -80.4          0.661     -83.6
 4 Month                     0        1           6.57         3.46        1  
 5 Day                      21        0.999      12.3          7.42        1  
 6 Year                      0        1        2021.           2.35     2005  
 7 Value                     0        1           0.00449      0.0165      0  
 8 Sample.Depth             21        0.999       3.95         8.00        0  
 9 Total.Depth           18336        0.0604      5.84         8.14        0.5
10 verbatimValue             0        1           0.00449      0.0165      0  
11 VerbatimLatitude          0        1          26.3          0.667      24.4
12 verbatimLongitude         0        1         -80.4          0.661     -83.6
13 Value_orig                0        1           0.00449      0.0165      0  
            p25        p50        p75     p100 hist 
 1 222842.      227721     642000.    647323   ▇▁▁▁▃
 2     25.9         26.3       26.8       28.4 ▁▅▇▅▁
 3    -80.1        -80.1      -80.1      -80.0 ▁▁▁▁▇
 4      4            7         10         12   ▇▅▆▆▇
 5      6           12         18         31   ▇▇▆▃▂
 6   2019         2021       2023       2023   ▁▁▁▃▇
 7      0.00102      0.002      0.004      0.5 ▇▁▁▁▁
 8      0.5          0.5        4.4      247   ▇▁▁▁▁
 9      0.719        4          7         52.7 ▇▁▁▁▁
10      0.00102      0.002      0.004      0.5 ▇▁▁▁▁
11     25.9         26.3       26.8       28.4 ▁▅▇▅▁
12    -80.1        -80.1      -80.1      -80.0 ▁▁▁▁▇
13      0.00102      0.002      0.004      0.5 ▇▁▁▁▁
create params$parameter_name histogram
ggplot2::ggplot(subset_data, aes(x=Value)) +
    geom_histogram(bins=30, fill="blue", color="black") +
    scale_y_log10() +  # Transform the y-axis to a logarithmic scale
    labs(title=paste("Histogram of Values for", params$parameter_name),
         x="Value",
         y="Log Frequency") +
    theme_minimal()