Turbidity

Turbidity Report

Code
if (!requireNamespace("librarian", quietly = TRUE)) {
  # If not installed, install the package
  install.packages("librarian")
}

librarian::shelf(
  glue,
  here,
  skimr,
  ggplot2
)

data <- read.csv(here("data/df_cleaned.csv"))
parameter_name <- params$parameter_name
apply param bounds
bounds <- read.csv(here("parameter_bounds.csv"), stringsAsFactors = FALSE, strip.white = T)
lower_bound <- bounds$min[bounds$param == parameter_name]
upper_bound <- bounds$max[bounds$param == parameter_name]

filter_condition <- (data$Parameter == parameter_name & (data$Value < lower_bound | data$Value > upper_bound))

tryCatch({  # this tryCatch is for when filter_condition is logical(0) i.e. no matches
  data <- dplyr::filter(
    data, 
    !filter_condition
  )
  print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
}, error = function(e){
  print(glue("no rows removed"))
})
0 rows dropped as < 0 or > 200
apply param bounds
print(glue("{sum(filter_condition)} rows dropped as < {lower_bound} or > {upper_bound}"))
0 rows dropped as < 0 or > 200
write cleaned DataFrame to a file
write.csv(data, here("data/df_cleaned_02.csv"), row.names = FALSE)
load data & skim
subset_data <- subset(data, Parameter == parameter_name)
print(skimr::skim(subset_data))
── Data Summary ────────────────────────
                           Values     
Name                       subset_data
Number of rows             41076      
Number of columns          17         
_______________________               
Column type frequency:                
  character                4          
  numeric                  13         
________________________              
Group variables            None       

── Variable type: character ────────────────────────────────────────────────────
  skim_variable n_missing complete_rate min max empty n_unique whitespace
1 Source                0         1       3  21     0        8          0
2 Site                  0         1       1  28     0      438          0
3 Parameter             0         1       9   9     0        1          0
4 Units                27         0.999   3   3     0        1          0

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     n_missing complete_rate      mean        sd       p0
 1 ...1                      0         1     591053.   17289.    566786  
 2 Latitude                  0         1         25.6      0.748     24.5
 3 Longitude                 0         1        -80.6      0.644    -82.6
 4 Month                     0         1          6.58     3.43       1  
 5 Day                       0         1         13.5      8.19       1  
 6 Year                      0         1       2015.       7.43    1995  
 7 Value                     0         1          1.22     2.53       0  
 8 Sample.Depth           2585         0.937      3.28     6.58       0  
 9 Total.Depth           23612         0.425      8.23     7.85       0  
10 verbatimValue             0         1          1.22     2.53       0  
11 VerbatimLatitude          0         1         25.6      0.748     24.5
12 verbatimLongitude         0         1        -80.6      0.644    -82.6
13 Value_orig                0         1          1.22     2.53       0  
         p25      p50      p75     p100 hist 
 1 577188.   587522.  604183.  631243   ▇▇▅▃▂
 2     24.8      25.7     26.1     27.2 ▇▃▇▅▂
 3    -80.9     -80.2    -80.1    -80.0 ▁▁▁▁▇
 4      3         7       10       12   ▇▅▅▆▇
 5      7        12       19       31   ▇▇▆▃▃
 6   2011      2018     2021     2023   ▁▁▂▂▇
 7      0.25      0.6      1.3    177   ▇▁▁▁▁
 8      0.5       0.5      3.2    121.  ▇▁▁▁▁
 9      3.15      6       10.4    121.  ▇▁▁▁▁
10      0.25      0.6      1.3    177   ▇▁▁▁▁
11     24.8      25.7     26.1     27.2 ▇▃▇▅▂
12    -80.9     -80.2    -80.1    -80.0 ▁▁▁▁▇
13      0.25      0.6      1.3    177   ▇▁▁▁▁
create params$parameter_name histogram
ggplot2::ggplot(subset_data, aes(x=Value)) +
    geom_histogram(bins=30, fill="blue", color="black") +
    scale_y_log10() +  # Transform the y-axis to a logarithmic scale
    labs(title=paste("Histogram of Values for", params$parameter_name),
         x="Value",
         y="Log Frequency") +
    theme_minimal()